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1. Since P is normal in G, we have that P ∩ H ⊴ H , therefore by second isomorphism
theorem [H : P ∩H] = [PH : P ]. Now since P is a Sylow p-subgroup, [G : P ] must be
coprime with p, therefore [PH : P ], as a factor of [G : P ] must also be coprime with p.
This establishes P ∩H as a p-subgroup inside H with [H : P ∩H] coprime with p, thus
it is a Sylow p-subgroup.

2. Let G be a group of order 56, we have n7 ≡ 1 mod 7, so n7 = 1 or 8. If n7 = 1 then
the unique Sylow 7-subgroup is proper normal and we are done. Otherwise suppose that
n7 = 8, since distinct cylic subgroups of prime order must intersect trivially, the eight
Sylow 7-subgroups would consist of a total of 6 · 8 = 48 distinct elements of order 7.
The remaining elements of G has order dividing 8. Since it is impossible for the Sylow 2-
subgroup of order 8 to have any element of order 7, the remaining 8 elements in G should
constitute the Sylow 2-subgroup. Therefore it is necessarily unique and hence normal. In
either cases, G is not simple.

3. Let G be a simple group of order 168, by simplicity there must be more than one Sylow
7-subgroup. And since n7 ≡ 1 mod 7, we can deduce that n7 = 8. We argue as before,
the Sylow 7-subgroups are cylic and intersect trivially. So there are 6 ·8 = 48 elements of
order 7. Any element of order 7 is clearly contained in some Sylow 7-subgroup, so this
accounts for all elements of order 7.

4. Let G be a group of order 231, then n11 ≡ 1 mod 11 so n11 can only be 1. Let H be
the unique Sylow 11-subgroup, we already know that it is normal. Let g ∈ G, define
φg : H → H by φg(h) = ghg−1. Then φg is an automorphism of H ∼= Z11. Recall that
for prime p, we have Aut(Zp) ∼= Zp−1, therefore the homomorphism φ : G → Aut(Z11)
by φ(g) = φg must be trivial, as |G|/| kerφ| = 1, 2, 5 or 10 implies that G = kerφ.
This implies that for any g ∈ G, h ∈ H , φg(h) = ghg−1 = h, so gh = hg. We have
H ≤ Z(G) so that 11 = |H| ≤ |Z(G)|.

5. This result (or the consequence thereof) is known as Cayley normal 2-complement theo-
rem. It says that if G has cyclic Sylow 2-subgroup, then it has an index two subgroup.

(a) Let P be a cyclic Sylow 2-subgroup, and pick s ∈ P a generator. The statement is
just saying that ϕ(s) ∈ SG = S2rm by ϕ(s) : g 7→ sg is an odd permutation. To see
why, let’s restrict the left regular action to P = ⟨s⟩ acting on G. The orbits of this
action are given by P · x = {y ∈ G : sk · x = y}. In other words, x, y are in the
same orbit if and only if they are in the same right P -coset.



Therefore G is partitioned into [G : P ] = m an odd number of orbits. The action of
P = ⟨s⟩ on each orbit is cyclic, in terms of ϕ(s) ∈ SG, this says that multiplying
by s is given by m disjoint cycles of length 2r. But since a cycle of length 2r can
be written as a product of 2r − 1 transpositions. We can write ϕ(s) as product of
(2r − 1)m many transpositions. Hence, ϕ(s) is an odd permutation and ψ(s) = 1.

(b) ψ(s) = 1 implies that ψ : G → Z2 is surjective, so ker(ψ) is a proper normal
subgroup. But G is simple, this forces that ker(ψ) = 1 and so ψ : G → Z2 is an
isomorphism.

6. (a) Suppose that pn is the highest power of a prime p that divides |G|, then there are at
most pn many elements having order dividing pn by the condition. If P is a Sylow p-
subgroup of order pn then all elements have order dividing pn and it already accounts
for all possible g with such orders. Therefore it is necessarily unique.

(b) Suppose that P is not cyclic, then all elements of P have order dividing pn−1. But
this would imply that there are pn many elements of order dividing pn−1, which is a
contradiction.

(c) All Sylow p-subgroups are unique and cyclic, by a proposition of lecture 5, we know
that G is isomorphic to the direct product of cyclic groups that are coprime in order.
Therefore it is also cyclic. (Recall that Zm × Zn

∼= Zmn if gcd(m,n) = 1.)

7. (a) nr ≡ 1 mod r, but we have p, q < r, so nr = 1 or possibly pq if pq ≡ 1 mod r. If
nr ̸= 1, then there are pq many Sylow r-subgroups which are all cyclic and therefore
there are pq(r − 1) many elements of order r.
Likewise for nq, by p < q we cannot have nq = p, but nq can possibly be 1, r, pr. So
if nq ̸= 1, there are at least r many Sylow q-subgroups, so there are at least r(q− 1)
many elements of order q.
Same argument for np implies that np could be 1, q, r, qr. So for np ̸= 1 we have at
least q(p− 1) many elements of order p.

(b) Suppose that all np, nq, nr are not 1, then by part (a) there are at least the following
number of distinct elements in G:

pq(r − 1) + r(q − 1) + q(p− 1) + 1 = pqr − pq + qr − r + pq − q + 1

= pqr + (q − 1)(r − 1)

> pqr = |G|

This is clearly a contradiction. So at least one of np, nq, nr is 1, and there is a unique
Sylow subgroup N that is normal. Then N is cyclic, and G/N has order pq, qr or
pr, which is solvable by a result in lecture 5.

8. (a) Consider the homomorphism φ : G/P → Aut(P ) defined by gP 7→ φg : P → P
by φg(x) = gxg−1. This is well-defined because if gP = g′P , then there is some
p ∈ P so that g′ = gp, then φg′(x) = g′xg′−1 = gpxp−1g−1. But P is cyclic, hence
abelian, so that pxp−1 = x, thus φg′ = φg. Now P ∼= Z2n and so |Aut(P )| = 2n−1

in bijection with the odd numbers from 1 to 2n. But then |G/P | = m is odd, so φ
must be trivial because the only odd factor of 2n−1 is 1.
Now let aP ∈ G/P is a generator of G/P and b ∈ P be a generator of P . If g ∈ G
is any element, g ∈ gP clearly, and thus g = (aP )i = aiP for some i. So that



g = aip for some p ∈ P , which in turn can be expressed as g = aibj . It suffices
to prove that a commutes with b, then for any g, h ∈ G, we have g = aibj and
h = akbl for some integers i, j, k, l, then gh = hg = ai+kbj+l. Now we know that
a, b commutes because φa(b) = aba−1 = b.

(b) First note that since G/P is cyclic of order m, (aP )m = amP = P implies that
am ∈ P , so we have am = bs for some positive integer s. Now since m and 2n

are coprime, the equation s ≡ c2n mod m is always solvable. Therefore am =
bc2

n+md = bmd for some integers c, d. This implies that amb−md = (ab−d)m = e,
denote ã = ab−d, note that ãP = aP

By the same argument as in part (a), we have that any g ∈ G can be expressed as
ãibj . We claim that ãb is a generator of G, i.e. we will show that for any i, j ∈ Z
there exists some k ∈ Z so that ãibj = ãkbk. This is equivalent to the equations

i ≡ k mod m

j ≡ k mod 2n

Since m and 2n are coprime, by Chinese remainder theorem, the above system is
always solvable for any i, j ∈ Z. Since G is generated by one element, it is cyclic.
Alternative argument: H = ⟨ã⟩ and P have coprime orders, thereforeH∩P = {e}.
G is abelian, so H,P are both subgroups. By Q5 of tutorial 4, we know that G =
HP is in fact isomorphic to H × P . Then we may conclude by noting that product
of cyclic groups of coprime orders is again isomorphic to a cyclic group.


