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. Since P is normal in G, we have that P N H < H, therefore by second isomorphism
theorem [H : PN H] = [PH : P]. Now since P is a Sylow p-subgroup, [G : P] must be
coprime with p, therefore [PH : P], as a factor of [G : P] must also be coprime with p.
This establishes P N H as a p-subgroup inside H with [H : P N H] coprime with p, thus
it is a Sylow p-subgroup.

2. Let G be a group of order 56, we have n; = 1 mod 7, son; = 1 or 8. If n; = 1 then
the unique Sylow 7-subgroup is proper normal and we are done. Otherwise suppose that
ny; = 8, since distinct cylic subgroups of prime order must intersect trivially, the eight
Sylow 7-subgroups would consist of a total of 6 - 8 = 48 distinct elements of order 7.
The remaining elements of GG has order dividing 8. Since it is impossible for the Sylow 2-
subgroup of order 8 to have any element of order 7, the remaining 8 elements in G should
constitute the Sylow 2-subgroup. Therefore it is necessarily unique and hence normal. In
either cases, G is not simple.

. Let GG be a simple group of order 168, by simplicity there must be more than one Sylow
7-subgroup. And since n; = 1 mod 7, we can deduce that n; = 8. We argue as before,
the Sylow 7-subgroups are cylic and intersect trivially. So there are 6 - 8 = 48 elements of
order 7. Any element of order 7 is clearly contained in some Sylow 7-subgroup, so this
accounts for all elements of order 7.

4. Let GG be a group of order 231, then n;; = 1 mod 11 so ny; can only be 1. Let H be
the unique Sylow 11-subgroup, we already know that it is normal. Let ¢ € G, define
v, : H— H by ¢,(h) = ghg™'. Then ¢, is an automorphism of H = Z,;. Recall that
for prime p, we have Aut(Z,) = Z,_,, therefore the homomorphism ¢ : G — Aut(Zy,)
by ©(g9) = ¢, must be trivial, as |G|/| ker | = 1,2,5 or 10 implies that G = ker ¢.
This implies that for any ¢ € G,h € H, ¢ (h) = ghg™" = h, so gh = hg. We have
H < Z(G)sothat 11 = |H| < |Z(G)|.

. This result (or the consequence thereof) is known as Cayley normal 2-complement theo-
rem. It says that if G has cyclic Sylow 2-subgroup, then it has an index two subgroup.

(a) Let P be a cyclic Sylow 2-subgroup, and pick s € P a generator. The statement is
just saying that ¢(s) € Sg = Sarm by ¢(s) : g — sg is an odd permutation. To see
why, let’s restrict the left regular action to P = (s) acting on GG. The orbits of this
action are givenby P -z = {y € G : s* - x = y}. In other words, z,y are in the
same orbit if and only if they are in the same right P-coset.
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Therefore G is partitioned into [G : P] = m an odd number of orbits. The action of
P = (s) on each orbit is cyclic, in terms of ¢(s) € Sg, this says that multiplying
by s is given by m disjoint cycles of length 2". But since a cycle of length 2" can
be written as a product of 2" — 1 transpositions. We can write ¢(s) as product of
(2" — 1)m many transpositions. Hence, ¢(s) is an odd permutation and v (s) = 1.

Y(s) = 1 implies that ) : G — Z is surjective, so ker(¢)) is a proper normal
subgroup. But G is simple, this forces that ker(¢)) = 1 and so ¢ : G — Zy is an
isomorphism.

Suppose that p™ is the highest power of a prime p that divides |G|, then there are at
most p" many elements having order dividing p" by the condition. If P is a Sylow p-
subgroup of order p" then all elements have order dividing p™ and it already accounts
for all possible g with such orders. Therefore it is necessarily unique.

Suppose that P is not cyclic, then all elements of P have order dividing p"~!. But
this would imply that there are p” many elements of order dividing p" !, which is a
contradiction.

All Sylow p-subgroups are unique and cyclic, by a proposition of lecture 5, we know
that G is isomorphic to the direct product of cyclic groups that are coprime in order.
Therefore it is also cyclic. (Recall that Z,,, X Z,, = Z, if ged(m,n) = 1.)

n, =1 mod r, but we have p, ¢ < r, son, = 1 or possibly pgif p¢g =1 mod r. If
n, # 1, then there are pqg many Sylow r-subgroups which are all cyclic and therefore
there are pg(r — 1) many elements of order r.

Likewise for ng, by p < ¢ we cannot have n, = p, but n, can possibly be 1, r, pr. So
if n, # 1, there are at least » many Sylow g-subgroups, so there are at least r(q — 1)
many elements of order ¢.

Same argument for n, implies that n,, could be 1, ¢, r, gr. So for n,, # 1 we have at
least ¢(p — 1) many elements of order p.

Suppose that all n,, ny, n, are not 1, then by part (a) there are at least the following
number of distinct elements in G:

pg(r = 1) +7r(g—1)+qlp—1)+1=pgr —pg+qr —r+pg—q+1
=pgr+(qg—1)(r—1)
> pgr = |G|

This is clearly a contradiction. So at least one of n,, ny4, n, is 1, and there is a unique
Sylow subgroup N that is normal. Then N is cyclic, and G/N has order pq, gr or
pr, which is solvable by a result in lecture 5.

Consider the homomorphism ¢ : G/P — Aut(P) defined by gP — ¢, : P — P
by p,(z) = grg~'. This is well-defined because if gP = ¢'P, then there is some
p € Psothat ¢ = gp, then ¢, (z) = g'zg'~* = gpxp~tg~'. But P is cyclic, hence
abelian, so that pxp~! = z, thus ¢, = p,. Now P = Zyn and so |Aut(P)| = 2!
in bijection with the odd numbers from 1 to 2". But then |G/P| = m is odd, so ¢
must be trivial because the only odd factor of 277! is 1.

Now let aP € G/P is a generator of G/P and b € P be a generator of P. If g € G
is any element, g € gP clearly, and thus ¢ = (aP)’ = a'P for some 4. So that
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g = a'p for some p € P, which in turn can be expressed as ¢ = a’b’. It suffices
to prove that a commutes with b, then for any g,h € G, we have ¢ = a'l/ and
h = a*b' for some integers i, j, k, [, then gh = hg = a"*/*'. Now we know that
a,b commutes because ¢, (b) = aba™! = b.

First note that since G/ P is cyclic of order m, (aP)™ = a™P = P implies that
a™ € P, so we have a™ = b° for some positive integer s. Now since m and 2"
are coprime, the equation s = ¢2" mod m is always solvable. Therefore o =
b2 tmd — pmd for some integers ¢, d. This implies that a™b~™¢ = (ab~?)™ = e,
denote @ = ab—%, note that aP = aP

By the same argument as in part (a), we have that any g € G can be expressed as
a't’. We claim that ab is a generator of G, i.e. we will show that for any i,j € Z
there exists some k € Z so that a'b’ = a*b*. This is equivalent to the equations

1=k modm
j=k mod2"

Since m and 2" are coprime, by Chinese remainder theorem, the above system is
always solvable for any ¢, j € Z. Since G is generated by one element, it is cyclic.
Alternative argument: H = (a) and P have coprime orders, therefore H N P = {e}.
G is abelian, so H, P are both subgroups. By Q5 of tutorial 4, we know that G =
H P is in fact isomorphic to H x P. Then we may conclude by noting that product
of cyclic groups of coprime orders is again isomorphic to a cyclic group.



